Transition-Metal-Free Carbofluorination of TBS-Protected Nitrogen-Containing Cyclic Enynols: Synthesis of Fluorinated Azabicycles

Ming-Chang P. Yeh*, Chia-Jung Liang, Tzu-Lin Huang, Hsaio-Ju Hsu, and Yu-Shou Tsau

Department of Chemistry, National Taiwan Normal University, 88 Ding-Jou Road, Section 4, Taipei 11677, Taiwan

ABTRACT: The synthesis of fluorinated azabicycles from tertbutyldimethylsilyl protected N -containing cyclic enynols using inexpensive $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ is described. In this reaction, BF_{3} reacts as both the Lewis acid and the fluoride source for cyclization/fluorination of the TBS-protected cyclic N containing enynols. The method provides an easy access to fluorinated azabicycles where a new $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{F}$ bond and a new bicyclic skeleton are generated at ambient temperature within 1-13 min under metal-free reaction conditions.

Scheme 1. Synthesis of Ketones 3a-d

Table 1. Optimizing of Reaction Conditions in the Carbofluorination of 1 a with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$

			$\xrightarrow[\text { solvent }]{\text { Lewis acid }}$	 2a	
Entry	Lewis acid	Loading (equiv)	Solvent	Time	Yield $(\%)^{\mathrm{a}}$
1	$\mathrm{BF}_{3} \mathrm{OEt}_{2}$	1	$0.1 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$	1 min	25
2	$\mathrm{BF}_{3} \mathrm{OEt}_{2}$	2	$0.1 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$	1 min	48
3	$\mathrm{BF}_{3} \mathrm{OEt}_{2}$	2	0.1 M DBE	1 min	34
4	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	2	0.1 M DCE	1 min	33
5	$\mathrm{BF}_{3} \mathrm{OEt}_{2}$	2	$0.1 \mathrm{M} \mathrm{CHCl}_{3}$	1 min	34
6	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	2	0.1 M toluene	1 min	6
7	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	2	0.01 M toluene	15 min	11
8	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	2	2.5 mM toluene	35 min	25
9	$\mathrm{BF}_{3} \mathrm{OEt}_{2}$	2	$0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{CN}$	1 min	$0^{\text {b }}$
10	$\mathrm{BF}_{3} \mathrm{OEt}_{2}$	10	$0.1 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$	1 min	50
11	$\mathrm{Ph}_{3} \mathrm{CBF}_{4}$	2	$0.1 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$	1 min	26
12	$\mathrm{Ph}_{3} \mathrm{CBF}_{4}$	5	$0.1 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$	1 min	27
13	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	2	0.1 M THF	10 h	$0{ }^{\text {c }}$
14	$n-\mathrm{Bu}_{4} \mathrm{NF}$	2	0.1 M THF	0.5 h	$0^{\text {c }}$
15	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	2	0.01 M THF	36 h	$0^{\text {d }}$
16	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	2	$0.01 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$	1 min	51
17	$\mathrm{BF}_{3} \mathrm{OEt}_{2}$	2	$2.5 \mathrm{mM} \mathrm{CH}_{2} \mathrm{Cl}_{2}$	1 min	56

${ }^{\text {a }}$ Isolated yields by column chromatography. ${ }^{\text {b }}$ Compound 4 was isolated in 79% yield. ${ }^{\text {c }}$ Deprotection product 1a' was isolated in good yields. ${ }^{\text {d }}$ Compound 1a was recovered quantitatively.

Table 2. Substrate scope

solated diffraction analysis.

Scheme 3. Postulated Reaction Paths for Formation of 1a and 3a

1a
F

3a

