Facile Synthesis of Azaspirocycles via Iron Trichloride-Promoted Cyclization/ Chlorination of Cyclic 8-Aryl-5-aza-5-tosyl-2-en-7-yn-1-ols

ORGANIC LETTERS

2012 Vol. 14, No. 7 1830–1833

Ming-Chang P. Yeh,* Cheng-Wei Fang, and Hsin-Hui Lin

Table 1. Optimizing the Reaction Conditions

entry	Lewis acid	solvent	temp (°C)	time	yield (%)
1	FeCl ₃	CH_2Cl_2	23	1 min	83
2	$FeCl_3$	$\mathrm{CH_2Cl_2}$	0	$3 \min$	72
3	$AlCl_3$	CH_2Cl_2	23	1 min	67^a
4	$TiCl_4$	CH_2Cl_2	23	$0.5\mathrm{h}$	17^b
5	SnCl_4	CH_2Cl_2	23	$0.5\mathrm{h}$	27
6	$ZnCl_2$	CH_2Cl_2	23	48 h	0
7	$Fe(NO_3)_3 \cdot 9H_2O$	CH_2Cl_2	23	48 h	0
8	$FeCl_3$	DCE	23	$1 \min$	74
9	$FeCl_3$	DBE	23	2 h	72
10	$FeCl_3$	THF	23	$26 \mathrm{h}$	23
11	FeCl_3	$\mathrm{CH_{3}CN}$	23		0

 $^aZ/E = 6:1$ (determined by 400 MHz 1 H NMR analysis of the crude reaction mixture). $^bZ/E = 13:1$ (determined by 400 MHz 1 H NMR analysis of the crude reaction mixture).

Table 2. FeCl₃-Promoted Cyclization/Chlorination of Various Cyclic 8-Aryl-5-aza-5-tosyl-2-en-7-yn-1-ols

entry	substrate	R_1	R_2	product	yield (%)
1	1a	phenyl	Н	2a	83
2	1b	4-methylphenyl	Η	2b	80
3	1c	4-nitrophenyl	Η	2c	83
4	1d	3-carbethoxyphenyl	Η	2d	89
5	1e	4-phenylphenyl	H	2e	89
6	1f	4-bromophenyl	Η	2f	90
7	1g	phenyl	CH_3	$2\mathbf{g}$	97
8	1h	4-methoxyphenyl	H		
9	1i	H	H		

Scheme 3. FeCl₃-Promoted Cylization/Chlorination of 10

a: n = 1, Ar = phenyl 86%
b: n = 1, Ar = 4-phenylphenyl 58%
c: n = 1, Ar = 4-methylphenyl 63%
d: n = 1, Ar = 4-bromophenyl 76%
e: n = 1, Ar = 3-carbethoxyphenyl 86%

f: n = 0, Ar = phenyl 81%

Scheme 1. Plausible Mechanism